Mechanism of action of RNase T. I. Identification of residues required for catalysis, substrate binding, and dimerization.
نویسندگان
چکیده
Escherichia coli RNase T, an RNA-processing enzyme and a member of the DEDD exonuclease superfamily, was examined using sequence analysis and site-directed mutagenesis. Like other DEDD exonucleases, RNase T was found to contain three conserved Exo motifs that included four invariant acidic residues. Mutagenesis of these motifs revealed that they are essential for RNase T activity, indicating that they probably form the RNase T catalytic center in a manner similar to that found in other DEDD exonucleases. We also identified by sequence analysis three short, but highly conserved, sequence segments rich in positively charged residues. Site-directed mutagenesis of these regions indicated that they are involved in substrate binding. Additional analysis revealed that residues within the C-terminal region of RNase T are essential for RNase T dimerization and, consequently, for RNase T activity. These data define the domains necessary for RNase T action, and together with information in the accompanying article, have led to the formulation of a detailed model for the structure and mechanism of action of RNase T.
منابع مشابه
Effects of Salt and pH on Binding and Catalysis by Ribonuclease A
Salt concentration and pH have dramatic effects on enzymatic catalysis. A quantitative description on these effects is important to elucidate the energetics and mechanisms of catalysis. Here, the effects of salt concentration and pH on binding and catalysis are analyzed with Ribonuclease A (RNase A) as a model system. 11 The effects of pH and mutagenesis on the stability of RNase A-nucleic acid...
متن کاملMolecular Interplay between the Dimer Interface and the Substrate-Binding Site of Human Peptidylarginine Deiminase 4
Our previous studies suggest that the fully active form of Peptidylarginine deiminase 4 (PAD4) should be a dimer and not a monomer. This paper provides a plausible mechanism for the control of PAD4 catalysis by molecular interplay between its dimer-interface loop (I-loop) and its substrate-binding loop (S-loop). Mutagenesis studies revealed that two hydrophobic residues, W347 and V469, are crit...
متن کاملNucleotides in precursor tRNAs that are required intact for catalysis by RNase P RNAs.
Precursor tRNAAsp molecules, containing a 26-base 5' leader, were treated with diethylpyrocarbonate, 50% hydrazine or anhydrous hydrazine/3M NaCl and then subjected to processing by RNase P RNAs from Escherichia coli or Bacillus subtilis. Fully processed tRNAs and material not successfully cleaved by the catalytic RNAs were analyzed for their content of chemically altered nucleotides. Several b...
متن کاملStructural insights into catalysis and dimerization enhanced exonuclease activity of RNase J
RNase J is a conserved ribonuclease that belongs to the β-CASP family of nucleases. It possesses both endo- and exo-ribonuclease activities, which play a key role in pre-rRNA maturation and mRNA decay. Here we report high-resolution crystal structures of Deinococcus radiodurans RNase J complexed with RNA or uridine 5'-monophosphate in the presence of manganese ions. Biochemical and structural s...
متن کاملMechanism of endonuclease cleavage by the HigB toxin
Bacteria encode multiple type II toxin-antitoxin modules that cleave ribosome-bound mRNAs in response to stress. All ribosome-dependent toxin family members structurally characterized to date adopt similar microbial RNase architectures despite possessing low sequence identities. Therefore, determining which residues are catalytically important in this specialized RNase family has been a challen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 51 شماره
صفحات -
تاریخ انتشار 2002